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Abstract
The challenge of equality in the strong subadditivity inequality of entropy
is approached via a general additivity of correlation information in terms of
nonoverlapping clusters of subsystems in multipartite states (density operators).
A family of tripartite states satisfying equality is derived.

PACS numbers: 03.65.Bz, 03.67.−a, 03.67.Hk

1. Introduction

Two, at first glance unrelated, concepts are investigated in this paper: the correlation
information connected with nonoverlapping composite subsystems (clusters) of a multipartite
quantum system and equality in strong subadditivity (SSA) of entropy. It is shown that the first
notion is useful for treating the second one. Needless to state that both concepts are important
for quantum information theory.

2. Cluster additivity of correlation information

Let ρ1,...,N be a multipartite state (density matrix), S1,...,N ≡ S(ρ1,...,N ) ≡ −
tr[ρ1,...,N log(ρ1,...,N )] the corresponding quantum entropy, ρ1 ≡ tr2,...,N (ρ1,...,N ), ρ2 etc the
reductions, and S1, S2, etc the corresponding entropies.

The well-known subadditivity of entropy claims that always S12 � S1 + S2, and that one
has equality if and only if ρ12 = ρ1 ⊗ ρ2 [1]. This generalizes to N subsystems.

Lemma 1. For all states ρ1,...,N and for N � 2 the subadditivity

S1,...,N �
N∑

n=1

Sn (1)
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is valid, and one has equality if and only if ρ1,...,N = (�⊗)Nn=1ρn, i.e., if all subsystems are
uncorrelated.

Proof. If the lemma is valid for (N−1) subsystems, i.e., if S1,...,(N−1) �
∑(N−1)

n=1 Sn, and one has
equality if and only if ρ1,...,(N−1) = (�⊗)

(N−1)
n=1 ρn, then it is valid also for N subsystems. This

is so because the first (N − 1) subsystems can be understood as one (composite) subsystem.
Then subadditivity for two subsystems implies S1,...,N � S1,...,(N−1) + SN . This inequality
in conjunction with the preceding one leads to S1,...,N �

∑N
n=1 Sn. One has equality if

and only if both inequalities preceding the last one are equalities. These are equivalent to
ρ1,...,N = [

(�⊗)
(N−1)
n=1 ρn

] ⊗ ρN . Since the claim is valid for N = 2, by total induction it is
valid for all N � 2. �

The nonnegative quantity

I1,...,N ≡
N∑

n=1

Sn − S1,...,N (2)

is called the correlation information (contained) in ρ1,...,N . For N = 2, it is called (quantum)
mutual information. The correlation information in an N-partite state is positive if ρ1,...,N is in
any way different from the tensor product of all subsystem states.

Let

� : {1, . . . , N} =
K∑

k=1

Ck (3)

be an arbitrary partitioning of the set {1, . . . , N} into classes, physically, clusters, each
consisting of some of the subsystems 1, 2, . . . , N . (Note that the clusters are nonoverlapping
in the subsystems. For this reason the union of subsets in (3) is written as a sum.) Let ρCk

be
the reduced density matrix corresponding to the kth cluster, obtained by tracing out in ρ1,...,N

all subsystems except those belonging to the class Ck . Let, further, SCk
be the entropy of this

density matrix. Lemma 1, in application to the clusters, implies

SCk
�

∑
n∈Ck

Sn (4a)

with equality if and only if all subsystems in the cluster are uncorrelated.
Let the correlation information in the cluster Ck be

ICk
≡

∑
n∈Ck

Sn − SCk
. (4b)

We call it the within-the-cluster correlation information. (Note that if Ck = {n}, then
ICk

= Sn − Sn = 0.) The correlation information in a composite cluster is zero if and only if
all subsystems in the cluster are uncorrelated.

Further, since the clusters can be understood as (composite) subsystems, (1) implies

S1,...,N �
K∑

k=1

SCk
(5a)

and one has equality if and only if all clusters are uncorrelated with each other.
Finally, let

I� ≡
K∑

k=1

SCk
− S1,...,N (5b)
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be the among-the-clusters correlation information. It is positive if and only if there is any
correlation among the clusters. If K = N , i.e., if all clusters in the partitioning (3) contain
only one subsystem, then (5b) has the special form (2).

Now, we formulate the theorem on cluster additivity of correlation information.

Theorem 1. For every N-partite state ρ1,...,N , the following additivity is valid:

I1,...,N = I� +
K∑

k=1

ICk
. (6)

In words, the total correlation information is the sum of the among-the-clusters one, and the
sum of the within-the-cluster ones summed over all clusters.

Note that (6) is valid for every partitioning �.

Proof. Adding and subtracting
∑K

k=1 SCk
on the rhs of (2), one obtains

I1,...,N =
(

K∑
k=1

SCk
− S1,...,N

)
+


 K∑

k=1


∑

n∈Ck

Sn − SCk







which, on account of (5b) and (4b), gives (6). �

The theorem is a rare statement of great generality that is harder to state than to prove. It
implies a useful corollary on successive binary steps.

Corollary 1. One can take K = 2, then within each cluster repeat this procedure, etc. In this
way I1,...,N is evaluated in terms of binary steps; each step giving a term that is a quantum
mutual information.

For N = 3 both the theorem and the corollary enable one only to make a one-step binary
partition; but this can be done in three ways: �1: {123} = {1} + {23},�2: {123} = {2} + {13}
and �3 : {123} = {3} + {12}. We will write I�1 as I1,23, etc to display the fact that one is
dealing with the mutual information between subsystem 1 and the cluster {23}, etc.

3. Basic case saturation

Let us turn to the strong subadditivity of entropy for tripartite systems. Its intuitively most
appealing form is

I12 � I1,23 (7)

etc. (See [2], theorem 11.15(2), pp 522–3. Nielsen and Chuang state only necessity of (7),
but prove its equivalence with the standard form of SSA.)

For N-partite systems, SSA has the general form which says: mutual information between
two nonoverlapping clusters never increases discarding any number of subsystems from any
of the clusters. (It is straightforward to establish equivalence between the general form
and (7).)

Strong subadditivity is an inequality. It is interesting to see when it is an equality, i.e.,
when it is saturated. There exist sufficient and necessary conditions for SSA equality in the
literature, cf [3–5] (but they are not easily workable). Recently a remarkable structure-of-state
solution of the problem of saturation in SSA appeared [6]. They made a nontrivial use of an,
also remarkable, result concerning density operators [7].
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It is to be suspected that the set of states satisfying equality in SSA is of measure zero in
the space of all states.

The simplest concrete example of saturation in SSA ([3], pp 4361–2) is the following:

ρ123 ≡ ρ12 ⊗ ρ3. (8)

The cluster additivity then gives utilizing �3: I123 = I12,3 + I12 = 0 + I12. On the other hand,
the partition �1 gives

I123 = I1,23 + I23 = I1,23 + 0. (9a)

Altogether,

I12 = I1,23 (9b)

i.e., we have an equality in SSA (cf (7)). One can generalize this.

Corollary 2. If ρ1,...,N = ρ1,...,M ⊗ ρ(M+1),...,N , then ICk,Cl
= ICk,C

′
l
, where Cl is a cluster

containing all subsystems (M + 1), . . . , N and at least one subsystem besides them, Ck is a
cluster nonoverlapping with Cl , and C ′

l is obtained from Cl by discarding any number of the
subsystems (M + 1), . . . , N .

Proof. Let C̄l be the cluster obtained from Cl by removing all subsystems (M + 1), . . . , N .
Then, on account of the fact that clusters can be viewed as (composite) subsystems, (9b)
implies

ICk,C̄l
= ICk,Cl

.

On the other hand, the general form of inequality (7) leads to

ICk,C̄l
� ICk,C

′
l

and also to

ICk,C
′
l
� ICk,Cl

.

The two inequalities and the preceding equality finally bear out the claim. �

4. Saturated mixes of saturated states

In [3] (p 4362), it was stated that no other special case has been found. The derivation that
follows is a reaction to this challenge.

Since in case (8) I23 = 0, and the first equality in (9a) is generally valid, one might think
that this lack of correlations between subsystems 2 and 3 is the crucial point. This would be a
wrong conjecture. We derive now a family of cases of SSA equality (9b) in which I23 > 0.

First we define the notion of a mixture (or a state decomposition) that is biorthogonal.

Definition 1. A state decomposition

ρ12 =
∑

k

wkρ
k
12 (10a)

(∀ k: wk > 0, ρk
12 > 0, tr ρk

12 = 1;∑
k wk = 1

)
is biorthogonal if, in terms of the reductions

of ρk
12,

∀ k �= k′: ρk
s ρ

k′
s = 0 s = 1, 2. (10b)

Now we define a family of states ρ123 satisfying the SSA equality (9b).
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Theorem 2. Let

ρ123 =
∑

k

wkρ
k
123 (11)

be a mixture of states such that, tracing out subsystem 3, one obtains a biorthogonal state
decomposition. Then, if SSA equality (9b) is valid for each state ρk

123 in the mixture (11), then
it is valid also for ρ123. Further, if there are at least two terms in the decomposition, then
I23 > 0 for ρ123 unless (11) is a special case of (8).

To prove the theorem, we need four auxiliary lemmas. The first is concerned with implied
biorthogonality in (11).

Lemma 2. If one views the tripartite system as a bipartite one, in particular as {123} =
{1} + {23}, decomposition (11) is biorthogonal.

Proof. Let ∀ k : ρk
2 ≡ tr13ρ

k
123 = ∑

i r
k
i |ki〉2〈ki |2 be spectral decompositions in terms of

positive eigenvalues. Substitution in (10b) for s = 2 gives

∀ k �= k′:
∑

i

∑
i ′

rk
i rk′

i ′ |ki〉2〈ki|2|k′i ′〉2〈k′i ′|2 = 0.

This implies

∀ k �= k′ ∀ i ∀ i ′: 〈ki|2|k′i ′〉2 = 0.

If Rk
2 ≡ ∑

i|ki〉2〈ki|2 are the range projectors of ρk
2 , then one further has

∀ k �= k′: Rk
2R

k′
2 = 0. (12)

One can always write ρk
23 = Rk

2ρ
k
23 = ρk

23R
k
2 (cf relation that is below (12a) in [8]).

Hence,

∀ k �= k′: tr
[
ρk

23ρ
k′
23

] = tr
[
Rk

2ρ
k
23ρ

k′
23R

k′
2

] = tr
[(

Rk′
2 Rk

2

)
ρk

23ρ
k′
23

] = 0.

(Relation (12) has been utilized.)
One can further write

0 = tr
[
ρk

23ρ
k′
23

] = tr
[(

ρk
23

)1/2
ρk′

23

(
ρk

23

)1/2]
.

This implies
[(

ρk
23

)1/2
ρk′

23

(
ρk

23

)1/2] = 0 because the operator is positive (cf lemma A.1 in [9]).

Further, ρk′
23

(
ρk

23

)1/2 = 0 (cf lemma A.2 in [9]). Multiplying this from the right by
(
ρk

23

)1/2
,

one finally obtains

∀ k �= k′: ρk
23ρ

k′
23 = 0. (13)

This, in conjunction with (10b) for s = 1, completes the proof. �

The next lemma concerns the mixing property of mutual information for biorthogonal
mixtures.

Lemma 3. Mutual information of a biorthogonal mixture with weights wk equals the sum of
the Shannon entropy H(wk) ≡ −∑

k wk log wk and the average mutual informations of the
states that are mixed.

This lemma was proved in [10] (see lemma 9 there). Next, we state and prove the
generalized mixing property of entropy of any mixture, which is known, but perhaps not well
known.
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Lemma 4. Let

ρ =
∑

k

wkρ
k (14a)

be any state decomposition. Then the following entropy decomposition is valid:

S(ρ) =
∑

k

[wkS(ρk‖ρ)] +
∑

k

[wkS(ρk)] (14b)

where S(ρ‖σ) ≡ tr(ρ log ρ) − tr(ρ log σ)] is the relative entropy of the corresponding states
(if the support of σ contains that of ρ).

Proof. First we must prove that

∀ k: supp(ρk) ⊆ supp(ρ). (15)

(By ‘support’ one means the subspace that is the topological closure of the range.) In view of
the fact that the support of a density matrix σ is spanned by any set of pure states into which σ

can be decomposed (cf appendix (ii) in [11]), one should decompose each ρk into pure states
and substitute in (14a). Then (15) obviously follows.

By substituting (14a) in part of (14b) (though not everywhere), one obtains

S(ρ) −
∑

k

[wkS(ρk)] = − tr

{∑
k

[wkρ
k log(ρ)]

}
+

∑
k

{wk tr[ρk log(ρk)]}

=
∑

k

{wk[−tr(ρk log ρ) + tr(ρk log ρk)]} =
∑

k

[wkS(ρk‖ρ)]. �

Remark 1. In the special case when (14a) is an orthogonal state decomposition, i.e., when
∀ k �= k′: ρkρk′ = 0, then (14b) takes on the well-known special form

S(ρ) = H(wk) +
∑

k

[wkS(ρk)] (16)

where H(wk) is the Shannon entropy of the probability distribution {wk: ∀ k}. One refers to
(16) as the mixing property of entropy [1].

Next, we define the concept of a mono-orthogonal mixture.

Definition 2. A state decomposition

ρ23 =
∑

k

wkρ
k
23 (17a)

is called mono-orthogonal in subsystem 2 if one has

∀ k �= k′: ρk
2ρk′

2 = 0 (17b)

in terms of the corresponding reductions.

Now we state a lemma on the mixing property of mutual information for mono-orthogonal
mixtures.

Lemma 5. If one has a mixture (17a) mono-orthogonal in subsystem 2, the mutual information
I23 of the decomposed state can be written as follows:

I23 =
∑

k

wkS
(
ρk

3

∥∥ρ3
)

+
∑

k

wkI
k
23. (18)
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Proof. The argument is straightforward in view of (17a) and (17b) with the help of (16)

I23 ≡ S2 + S3 − S23 =
{

H(wk) +
∑

k

[
wkS

(
ρk

2

)]}

+

{∑
k

[
wkS

(
ρk

3

∥∥ρ3
)]

+
∑

k

[
wkS

(
ρk

3

)]} −
{

H(wk) +
∑

k

[
wkS

(
ρk

23

)]}
.

After cancellation and substitution of I k
23, the claimed relation (18) ensues. �

Proof of the theorem. On account of the implied biorthogonality (lemma 2), we can apply
the mixing property of lemma 3 to decomposition (11). Hence

I1,23 = H(wk) +
∑

k

wkI
k
1,23.

Lemma 3 can also be applied to decomposition (10a), when it is obtained by tracing out
subsystem 3 in (11)

I12 = H(wk) +
∑

k

wkI
k
12.

Since by assumption ∀ k : I k
12 = I k

1,23, the last two relations bear out the first claim of the
theorem.

Finally, a glance at (18) reveals that for K � 2, one can have I23 = 0 if and only if
∀ k: ρk

123 = ρk
12 ⊗ ρ3. This would reduce it to case (8). �

Remark 2. Utilizing in theorem 2 (8) for each state ρk
123, but possibly with distinct factor

states for different values of k, one obtains various concrete states ρ123 satisfying (9b).

Let us return to inequality (7). There are six distinct inequalities of this type (obtained
from (7) by permutations). Each of them defines a nonnegative excess in mutual information,
e.g. (I1,23 − I12). Two by two of the six excesses are equal. For example

I1,23 − I12 = I12,3 − I23. (19)

Equality (19) is obvious if rewritten as

I1,23 + I23 = I12,3 + I12

when it is an instance of the cluster additivity of correlation information in the tripartite system.
Zero excess is the same thing as equality in SSA of entropy. Thus, (9b) gives rise to

I23 = I12,3 (20)

and vice versa.
When (9b) is valid, relation (20) is a new equality in SSA. In case (8), (20) is trivial,

because subsystem 3 has zero mutual information both with subsystems 2 and 12, and then
also the excess is zero. In the case treated in theorem 2, (20) is a, perhaps even surprising,
new result.

Finally, let us see if in the case defined in theorem 2 one can, in the spirit of corollary 2,
replace subsystem 3 by a composite system, a cluster, and discard not the whole cluster, but
only a part of it, and still have no decrease in mutual information with another (nonoverlapping)
cluster. An affirmative answer follows from realizing that in the proof of corollary 2, all that
was used was the possibility of discarding the whole cluster (equality ICk,C̄l

= ICk,Cl
), and two

SSA inequalities. All three are valid also in the present case.
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In conclusion, one may say that the general cluster additivity of correlation information
(theorem 1), used through successive binary partitionings (corollary 1), gave a useful view of
correlations. It made possible generating new equalities (cf (20)), as well as generalization to
clusters (cf remark 2 and the preceding passage). The main result is the family of states ρ123

satisfying equality in SSA of entropy (theorem 2).
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